Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In 2020 the Bush Fire burned approximately half of the Sycamore Creek watershed in central Arizona. Sycamore Creek has been the subject of more than 40 years of research and the stream has been monitored by NEON since 2017. We studied the effects of fire on biogeochemistry of the stream and its watershed. We deployed autosamplers to monitor stream chemistry during storms on the mainstem and in ephemeral tributaries draining burned and unburned watersheds. The storm sampling program commenced nearly a year following the fire because absence of summer monsoon or winter storms in 2020-21 resulted in no flow in tributaries and intermittent flow in the mainstem. Water chemistry was measured during 14 monsoon storms of 2021 and winter frontal storms of 2021-22 with samples of baseflow collected in the mainstem during intervening periods. Water samples were analyzed for dissolved organic carbon, nitrogen, phosphorus, and major anions and cations. We also measured nutrient content of ash and chemistry of ash leachate as a potential source of solutes to stream biota.more » « less
-
Stream metabolism, encompassing gross primary production and ecosystem respiration, reflects the fundamental energetic dynamics of freshwater ecosystems. These processes regulate the concentrations of dissolved gases like oxygen and carbon dioxide, which in turn shape aquatic food webs and ecosystem responses to stressors such as floods, drought, and nutrient loading. Historically difficult to quantify, stream metabolism is now measurable at high temporal resolution thanks to advances in sensor technology and modeling. The StreamPULSE dataset includes high-frequency sensor data, metadata, and modeled estimates of ecosystem metabolism. This living dataset contributes to a growing body of open-access data characterizing the metabolic pulse of stream ecosystems worldwide. To contribute to StreamPULSE, visit data.streampulse.org. All data contributed to StreamPULSE become public after an optional embargo period. Use this publication to access annual data releases, or use data.streampulse.org to download new data as they become available.more » « less
-
Nature-based solutions (NbS) have emerged as a key strategy for sustainably addressing multiple urban challenges, with rapidly increasing knowledge production requiring synthesis to better understand whether and how NbS work in different social, ecological, economic, or governance contexts. Insights in this Perspective are drawn from a thematic review of 61 NbS review articles supported by an expert assessment of NbS knowledge in seven global regions to examine key challenges, fill gaps in Global South assessment, and provide insights for scaling up NbS for impact in cities. Eight NbS challenges emerged from our review of NbS reviews including conceptual, thematic, geographic, ecological, inclusivity, health, governance, and systems challenges. An additional expert assessment reviewing literature and cases in seven global regions further revealed the following: 1) Local context-based ecological knowledge is essential for NbS success; 2) Improved technical knowledge is required for planning and designing NbS; 3) NbS need to be included in all levels of planning and governance; 4) Putting justice and equity at the center of urban NbS approaches is critical, and 5) Inclusive and participatory governance processes will be key to long-term success of NbS. We synthesized findings from the NbS review results and regional expert assessments to offer four critical pathways for scaling up NbS: 1) foster new NbS research, technological innovation, and learning, 2) build a global NbS alliance for sharing knowledge, 3) ensure a systems approach to NbS planning and implementation, and 4) increase financing and political will for diverse NbS implementation.more » « lessFree, publicly-accessible full text available July 22, 2026
-
Abstract Wildfires have increased in size, frequency, and intensity in arid regions of the western United States because of human activity, changing land use, and rising temperature. Fire can degrade water quality, reshape aquatic habitat, and increase the risk of high discharge and erosion. Drawing from patterns in montane dry forest, chaparral, and desert ecosystems, we developed a conceptual framework describing how interactions and feedbacks among material accumulation, combustion of fuels, and hydrologic transport influence the effects of fire on streams. Accumulation and flammability of fuels shift in opposition along gradients of aridity, influencing the materials available for transport. Hydrologic transport of combustion products and materials accumulated after fire can propagate the effects of fire to unburned stream–riparian corridors, and episodic precipitation characteristic of arid lands can cause lags, spatial heterogeneity, and feedbacks in response. Resolving uncertainty in fire effects on arid catchments will require monitoring across hydroclimatic gradients and episodic precipitation.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Complex adaptive systems – such as critical infrastructures (CI) – are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure’s capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene.more » « less
-
Flooding occurs at different scales and unevenly affects urban populations based on the broader social, ecological, and technological system (SETS) characteristics particular to cities. As hydrological models improve in spatial scale and account for more mechanisms of flooding, there is a continuous need to examine the re- lationships between flood exposure and SETS drivers of flood vulnerability. In this study, we related fine-scale measures of future flood exposure—the First Street Foundation’s Flood Factor and estimated change in chance of extreme flood exposure—to SETS indicators like building age, poverty, and historical redlining, at the parcel and census block group (CBG) scales in Portland, OR, Phoenix, AZ, Baltimore, MD, and Atlanta, GA. We used standard regression models and accounted for spatial bias in relationships. The results show that flood exposure was more often correlated with SETS variables at the parcel scale than at the CBG scale, indicating scale dependence. However, these relationships were often inconsistent among cities, indicating place-dependence. We found that marginalized populations were significantly more exposed to future flooding at the CBG scale. Combining newly-available, high-resolution future flood risk estimates with SETS data available at multiple scales offers cities a new set of tools to assess the exposure and multi-dimensional vulnerability of populations. These tools will better equip city managers to proactively plan and implement equitable interventions to meet evolving hazard exposure.more » « less
-
Abstract Cities need to take swift action to deal with the impacts of extreme climate events. The co-production of positive visions offers the potential to not only imagine but also intervene in guiding change toward more desirable urban futures. While participatory visioning continues to be used as a tool for urban planning, there needs to be a way of comparing and evaluating future visions so that they can inform decision-making. Traditional tools for comparison tend to favor quantitative modeling, which is limited in its ability to capture nuances or normative elements of visions. In this paper, we offer a qualitative method to assess the resilience, equity, and sustainability of future urban visions and demonstrate its use by applying it to 11 visions from Phoenix, AZ. The visions were co-produced at two different governance scales: five visions were created at the village (or borough) scale, and six visions were created at the regional (or metropolitan) scale. Our analysis reveals different emphases in the mechanisms present in the visions to advance resilience, sustainability, and equity. In particular, we note that regional future visions align with a green sustainability agenda, whereas village visions focus on social issues and emphasize equity-driven approaches. The visions have implications for future trajectories, and the priorities that manifest at the two scales speak of the political nature of visioning and the need to explore how these processes may interact in complementary, synergistic, or antagonistic ways.more » « less
An official website of the United States government
